
www.manaraa.com

Fundamentals of Web
Programming a

Software As A Service

Teodor Rus

rus@cs.uiowa.edu

The University of Iowa, Department of Computer Science

a
Copyright 2009 Teodor Rus. These slides have been developed by Teodor Rus using material published on Wikipedia. They are copyrighted materials and may not be

used in other course settings outside of the University of Iowa in their current form or modified form without the express written permission of the copyright holder. During this

course, students are prohibited from selling notes to or being paid for taking notes by any person or commercial firm without the express written permission of the copyright

holder.

Introduction System Software. Copyright Teodor Rus – p.1/26



www.manaraa.com

The Concept
Software as a service (SaaS) is a model of
software deployment whereby a provider
licenses an application to customers for use
as a service on demand.
Approach:

• SaaS software vendors may host the application on their own web
servers or download the application to the consumer devices,
disabling it after use or after the on-demand contract expires.

• The on-demand function may be handled internally to share
licenses within a firm or by a third-party application service
provider (ASP) sharing licenses between firms.

Introduction System Software. Copyright Teodor Rus – p.2/26



www.manaraa.com

Goal
The sharing of end-user licenses and on-demand

use may reduce investment in server hardware or

the shift of server use to SaaS suppliers of appli-

cations file services.

Introduction System Software. Copyright Teodor Rus – p.3/26



www.manaraa.com

References
1. Finch, Curt (2006-01-02). The Benefits of the Software-as-a-Service Model.

http://www.computerworld.com/action/article.do?

command=viewArticleBasic&articleId=107276.

2. Bennett, Keith; et al. (December 2000). "Service-based software" (PDF).

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=896702

3. SIIA (2001-02). Software as a Service: Strategic Backgrounder.
http://www.siia.net/estore/ssb-01.pdf.

4. Archive.org crawled site in 1999.
http://web.archive.org/web/19991007185122/http://siteeasy.com/

5. Traudt, Erin; Amy Konary (June 2005). "2005 Software as a Service Taxonomy
and Research Guide". IDC. pp. 7.

Introduction System Software. Copyright Teodor Rus – p.4/26



www.manaraa.com

More References
6. "Architecture strategies for catching the long tail". April 2006. Retrieved

2008-05-24.

7. Wainewright, Phil (October 2007). "Workstream prefers virtualization to
multi-tenancy". Retrieved 2008-05-24.

8. Chong, Fred (October 2006). "Multi-tenancy and Virtualization". Retrieved
2008-05-24.

9. Schuller, Sinclair (March 2007). "Repealing the SaaS Tax". Retrieved 2008-05-24.

10. The Overlapping Worlds of SaaS and SOA

11. Gartner Survey Shows Many Users are Underwhelmed by Their Experiences of
SaaS, Gartner.com, 2009-07-08. Retrieved 2009-09-16

12. "SaaS 2.0: Saugatuck Study Shows Rapid SaaS Evolution to Business Platforms".
April 2006. Retrieved 2006-09-01.

Introduction System Software. Copyright Teodor Rus – p.5/26



www.manaraa.com

History
The concept of "software as a service" started to
circulate before 1999.[1]
Some breaking points:

• In December 2000, Bennett et al. noted the term as "beginning to
gain acceptance in the marketplace".[2]

• The acronym "SaaS" was allegedly coined in the white paper
called "Strategic Backgrounder: Software as a Service", which
was published in February 2001 by the Software & Information
Industry’s (SIIA) eBusiness Divisions

Introduction System Software. Copyright Teodor Rus – p.6/26



www.manaraa.com

Philosophy
SaaS does not concern computer user! Rather:

• SaaS is used by software professionals and business associates
with the meaning of business software;

• It is typically thought of as a low-cost way for businesses to obtain
rights to use software as needed versus licensing all devices with
all applications.

• On-demand licensing enables the benefits of commercially
licensed use without the associated complexity and potential high
initial cost of equipping every device with the applications that are
only used when needed.

Introduction System Software. Copyright Teodor Rus – p.7/26



www.manaraa.com

Fact
Virtually all software fits the SaaS model.
Example:

• A licensed copy of a word processor had to reside on the machine
to create a document.

• The equipped program has no intrinsic value loaded on a
computer that is turned off for the night.

• Remote administration software attempts to resolve this issue
through sharing CPU control instead of licensing on demand.

• SaaS achieves efficiencies by enabling the on demand licensing
and management of the information and output, independent of
the hardware location.

Introduction System Software. Copyright Teodor Rus – p.8/26



www.manaraa.com

SaaS Applications
SaaS applications were developed specifically to
leverage web technologies such as the browser,
thereby making them web-native.

• The data design and architecture of SaaS applications are
specifically built with a ’multi-tenant’ backend, thus enabling
multiple customers or users to access a shared data model;

• SaaS providers leverage enormous economies of scale in
deployment, management, and support throughout
the Software Development LifeCycle.

Introduction System Software. Copyright Teodor Rus – p.9/26



www.manaraa.com

Characteristics
Main characteristics of SaaS software includes:

1. Network-based access to, and management of, commercially
available software;

2. Activities managed from central locations rather than at each
customer’s site, enabling remote access via the Web;

3. Application delivery typically closer to a one-to-many model than
to a one-to-one model, including architecture, pricing, partnering,
and management characteristics;

4. Centralized feature updating, which obviates the need for
end-users to download patches and upgrades;

5. Frequent integration into a larger network of communicating
software (either as part of a mashup or as a plugin to a platform as a service).

Notice: Service Oriented Architecture (SOA) is naturally more complex
Introduction System Software. Copyright Teodor Rus – p.10/26



www.manaraa.com

Pricing
Providers of SaaS generally price applications on

a per-user basis with a relatively small minimum

number of users and often with additional fees for

extra bandwidth and storage.

Introduction System Software. Copyright Teodor Rus – p.11/26



www.manaraa.com

Consequences
• SaaS revenue streams to the vendor and therefore are lower

initially than traditional software license fees.

• Recurring nature of SaaS use is viewed as more predictable, and
much like maintenance fees for licensed software.

• In addition, SaaS software has these additional benefits:
1. More feature requests from users since there is frequently no marginal cost

for requesting new features;

2. Faster releases of new features since the entire community of users benefits
from new functionality;

3. The embodiment of recognized best practices (since the community of users
drives the software publisher to support best practice).

Introduction System Software. Copyright Teodor Rus – p.12/26



www.manaraa.com

Implementation
SaaS architectures can generally be classified as
being at one of four "maturity levels" whose key
attributes are:

1. configurability,

2. multi-tenant efficiency,

3. scalability.

Each level is distinguished from the previous level by the addition of

one of those three attributes.

Introduction System Software. Copyright Teodor Rus – p.13/26



www.manaraa.com

Level 1
Ad-Hoc/Custom, characterized by:

• Each customer has its own customized version of the hosted
application and runs its own instance of the application on the
host’s servers.

• Migrating a traditional non-networked or client-server application
to this level of SaaS typically requires the least development effort
and reduces operating costs by consolidating server hardware
and administrations.

Introduction System Software. Copyright Teodor Rus – p.14/26



www.manaraa.com

Level 2
Configurable, characterized by:

• Greater program flexibility through configurable metadata, so that
many customers can use separate instances of the same
application code.

• This allows the vendor to meet the different needs of each
customer through detailed configuration options, while simplifying
maintenance and updating of a common code base.

Introduction System Software. Copyright Teodor Rus – p.15/26



www.manaraa.com

Level 3
Configurable, Multi-Tenant-Efficient,
characterized by:

• A single program instance serves all customers.

• This approach enables more efficient use of server resources
without any apparent difference to the end user, but ultimately
comes up against limits in scalability.

Introduction System Software. Copyright Teodor Rus – p.16/26



www.manaraa.com

Level 4
Scalable, Configurable, Multitenant-Efficient,
characterized by:

• The fourth and final SaaS maturity level adds scalability through a
multitier architecture supporting a load-balanced farm of identical
application instances, running on a variable number of servers.

• The provider can increase or decrease the system’s capacity to
match demand by adding or removing servers, without the need
for any further alteration of applications software architecture.

Introduction System Software. Copyright Teodor Rus – p.17/26



www.manaraa.com

Virtualization
SaaS architectures may also use virtualization,
either in addition to multi-tenancy, or in place of it.
Benefits:

• Virtualization can increase the system’s capacity without
additional programming. However, a considerable amount of
programming may be required to construct a more efficient,
multi-tenant application.

• Combining multi-tenancy and virtualization provides still greater
flexibility to tune the system for optimal performance.

• In addition to full operating system-level virtualization, some
virtualization techniques applied to SaaS include application
virtualization and virtual appliances.

Introduction System Software. Copyright Teodor Rus – p.18/26



www.manaraa.com

Components
SaaS applications may use various types of
software components and frameworks.
Benefits:

• These tools can reduce the time-to-market and the cost of
converting a traditional on-premise software product or building
and deploying a new SaaS solution.

• Examples: include components for subscription management, grid
computing software, web application framework.

Introduction System Software. Copyright Teodor Rus – p.19/26



www.manaraa.com

Evolutionary Origin of SaaS
The origin of Web Services is the development of
the distributed computer technology that support
interoperability.

• A Web service is defined by the two HTTP methods: GET, POST
and a vast collection of markup documents;

• Rather than deploying documents, one can deploy software
components;

• Components can however be run on the Web server as remote
services.

• Remote Procedure Call and the two technologies that followed
DCOM (Microsoft) and CORBA (OMG) are best known examples.

Introduction System Software. Copyright Teodor Rus – p.20/26



www.manaraa.com

Component Interoperation
Neither DCOM nor CORBA support universal
component interoperability, which means:

"when a software needs a service it should be implicitly available on

the Wei".

There are three roles required in order to use
Web services:

1. Service providers (producers);

2. Service requesters (consumers);

3. Service registry.

Introduction System Software. Copyright Teodor Rus – p.21/26



www.manaraa.com

Service Providers
A service provider must develop and deploy
software that provide services.

• The service must have a standard description. The Web Service
Description Language (WSDL) is the language designed for
service description.

• WSDL is a W3C standard based on XML. Its specification is
published on a Web server similar to other Web accessible
documents.

• The description of service data (input and output) as well as the
specific operations provided by a Web Service and the protocols
for messages Web service can send/receive are written in WSDL.

Introduction System Software. Copyright Teodor Rus – p.22/26



www.manaraa.com

Web Service Registry
The Universal Description, Discovery, and
Integration (UDDI) is the registry created for
Web Service Registration.

• UDDI provides methods for querying Web service registry to
determine what specific services are available;

• UDDI has two kinds of clients: service providers and service
requesters who query UDDI using WSDL queries;

• Service providers query the UDDI for service registry; service
requesters query the UDDI for service use;

• UDDI registry respond with the protocol of how the
providers/requesters may interact with the requested Web
services.

Introduction System Software. Copyright Teodor Rus – p.23/26



www.manaraa.com

SOAP
SOAP is an XML tag set that defines forms of
massages and RPCs used by the Web services
registered on the UDDI.

• SOAP was originally an acronym for Standard (Simple) Object
Access Protocol, designed to describe data objects;

• The root element of a SOAP document in Envelope, so SOAP
documents are also called envelops;

• The body of a SOAP message is either a request (which is a RPC)
or a response (which contains values returned from the service;

• SOAP messages are sent using HTTP POST method.

Introduction System Software. Copyright Teodor Rus – p.24/26



www.manaraa.com

Service Consumers
Web service consumers are clients of services
which can be: Web applications,
non-Web-applications, or other Web-services.
Web service client architecture:

• Web service client includes a proxy on the client machines which
is a local substitute for the remote Web service;

• The client can call the methods of the remote service, so the calls
are received by the proxy;

• Special tools are designed for this purpose. See Cloud computing
and ASP.NET.

Introduction System Software. Copyright Teodor Rus – p.25/26



www.manaraa.com

Another View
Web services are business objects that concern
computer use as a problem solving tool.
However:

• The Web service business participants are all computer experts.

• On the other hand, computer use as a problem solving tool
conquers all aspects of human life.

• Since software tools supporting the development and use of Web
services are designed by and are targeted to computer experts,
the current Web service business excludes most of its potential
customers from their participation.

• To show this anomaly we take a look at the three main bricks
supporting the Web service business: WSDL, SOAP, and UDDI.

Introduction System Software. Copyright Teodor Rus – p.26/26


	The Concept
	Goal
	References
	More References
	History
	Philosophy
	Fact
	SaaS Applications
	Characteristics
	Pricing
	Consequences
	Implementation
	Level 1
	Level 2
	Level 3
	Level 4
	Virtualization
	Components
	Evolutionary Origin of SaaS
	Component Interoperation
	Service Providers
	Web Service Registry
	SOAP
	Service Consumers
	Another View

